
MAA PROGRAM FOR MATHEMATICS AND THE BEHAVIORAL SCIENCES 

Psychology 

Lecturer: R. Duncan Luce 

Notes by: Henry A. Selby 

In this section of the seminar we shall orient the re- 

marks around aspects of two substantive topics: preference 

and psychophysics. We shall present both algebraic and 

probabilistic formulations with special emphasis on conditions 

under which numbers can be introduced into the analysis of 

social scientific data, as well as in theory construction. We 

begin with one problem in the foundations of measurement in 

the social (and physical) sciences. 

Foundations of bleasurement* 

One fundamental mathematical result which is a basis for 

Holder's theorem states that any Archimedean ordered group is 

homomorphic to a subgroup of the additive real numbers, i.e., 

there exists a function from the given group into the reals 

such that 

*The reference for this first section of the lectures 
is Krantz, David, R. Duncan Luce, Patrick Suppes and Amos 
Tversky (1972) Foundations of Measurement. New York Academic 
Press. In particular the reader is referred to chapters 1,2, 
3,6,7, and 9. See also Krantz, D. H. (1968) "A Survey of 
Measurement Theory" in Dantzig, G. B. and A. T. Veinott (eds). 
Mathematics of the Decision Sciences, 11. Providence, R. I. 
American Mathematical Society, pp. 314-350; Pfanzagl, J. 
(1968) Theory of Measurement. New York, Wiley; and Fishburn, 
P. C. (1970) Utility Theory and Decision Making, New York, Wiley. 
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a - < b iff +(a) ( +[b). 

The axioms of an Archimedean ordered group will be given im- 

plicitly below. This simple axiom is an idealized account 

of the measurement of mass length etc., in the physical 

sciences, but it has not been useful in the social sciences. 

It seems not possible to find suitable concatenation (group 

or semi-group) operations in the social sciences. Nonetheless, 

intuitively it appears that there ought to be some measureable 

scales: utility in economics, loudness and pitch of tones 

and brightness of lights is psychophysics, and many others 

such as hunger, intelligence, etc., in psychology. All of 

these seem to have numerical properties. Consider the loud- 

ness example from psychophysics. Clearly loudness of a pure 

tone is not the same as intensity (amplitude of the sinusoid) 

- -  the latter spans thirteen orders of magnitude, but not 

the former. bloreover what is judged as a reduction by half 

in loudness is not half in intensity. 

One recently proposed system of measurement does not 

require any explicit concatenation operation. It certainly 

applies to some physical measurement and it appears poten- 

tially useful in the social sciences. Instead of a concatena- 

tion operation on a set, the basic set is assumed to be a 

Cartesian product of factors and there is an ordering over 

this product set. In particular, suppose there are n sets 
n 

Ai, i = 1, ..., n, then the ordering is on Ai . A physical 



example is the ordering by momentum when the factors are 

the mass and velocity of objects. In one psychophysical 

example let A1 be the set of intensities of a pure tone 

presented to one ear, and A2 those to the other ear, and let 

the ordering of A1 x A2 be judged overall loudness (see 

Krantz et al. 1972: Chapter 2 and p. 269). 

The problem of finding a suitable axiomatic set can be 

stated as follows. -We require axioms that will lead to a 

function F, where, F: Re X Re + Re, and the two functions 

+i, where Oi: Ai + Re, such that for all a,b E A1, and 

P,4 E A2 

ap bq iff FIQlla), +2(~)1 2 F[$l(b), $2(q11. 

The special case of this general representation that we shall 

study is the additive one, i.e., 

F(x,y) = x + y. 

We desire axioms sufficient to lead to such an additive 

representation. One set is: 

(1) The ordering must be a weak ordering, i.e., given any 

pair a,b, then either a b, or b ; a (connectedness) and < is 
transitive. 

(2) Independence. For all a,b E A1, and p,q E A2 

ap 2 bp iff aq ; bq 
and ap; aq iff bp ;bq . 

From this we may induce orderings on Ai as follows: 

a < b if there exists p E A2 such that ap ; bp, p ; q if 
1 2 

there exists a E A1 such that ap < aq. From the axiom, the 



ordering on A1 is independent of the choice of p and the 

ordering on A2 is independent of the choice of a. 

(3) Double Cancellation. For all a,b,f E A1, p,q,x E A2, 

if ax z fq and fp z bx, then ap bq. (This property is 

called the Thomsen condition in the theory of webs.) 

(4) The Archimedean Property. The ordering must exhibit 

the qualitative property which is the analogue of the usual 

Archimedean property of numbers, namely that all non-zero 

numbers are commensurate. (For an explicit statement of 

this axiom see Krantz et a1 1972:263.) 

(5) Unrestricted Solvability. Given any three of a,b, E A1, 

p,q, E A2, the fourth exists, such that ap < bq and bq ap, 
which we abbreviate as ap % bq. 

Theorem 

If axioms 1 - 5 hold, then there exist functions 

: Ai + Re such that 

aP 2 bq iff $l(al + 42(b1 z $l(b) + $2(q) 

If $i exhibit the same property then there exists a > 0, and 

Bi that 

oi = a$i + Bi ' 

Outline of Proof of Theorem 

(Throughout the proof we use unrestricted solvability without 

explicit mention.) 

Choose any a. E A1, po E A2 and define ao, T, o1 as 

solutions of the following indifferences: 



I n t u i t i v e l y ,  i f  we r e p r e s e n t  t h e  f a c t o r s  a s  l i n e s ,  then wi th  

a  po and a  given ~ ( a )  i s  s e l e c t e d  so  t h a t  combined wi th  
0 ' 

a. it j u s t  balances  t h e  e f f e c t  of a  combined wi th  po as  

shown i n  t h e  s k e t c h .  

The fol lowing s t a tements  a r e  e a s i l y  proved: 

a ~ ( b )  - bn (a )  

a o r ( a o )  - aopo (which implied n(ao)  Q2 P,) 

(a)  [ r ( a >  I -1 a  

Using t h e s e  we show t h a t  t h e  system A1, o l ,  i s  i n  

f a c t  an Archimedean ordered group. 

1. a  i s  an i d e n t i t y  
0 

By d e f i n i t i o n  (aolao)po - aT(ao) - apo,  whence by 

d e f i n i t i o n  of aolao -la . 
1 

2 .  Exis tence  of Inverses .  Let p  s o l v e  ap - aopo and d e f i n e  

- 1 a  = o(p) . Then (aoa- l )po  5 a T ( a - l )  - a n [ a ( p ) ]  - aP aopo, 



- 1 - 1 and s o  aola .rl ao .  The p roo f  t h a t  a  o la  aQs s i m i l a r .  

3 .  A s s o c i a t i v i t y .  Observe b r ( a )  Q (aolb)po and (bolc)po Q b r ( c )  

imply,  by Axiom 3 ,  b ( o l c ) r ( a )  Q ( a o l b ) r ( c ) .  Thus, 

[aol  (bolt) l p 0  Q a r  (bolt) 

Q ( b o l c ) r ( a )  

Q ( a o l b ) r ( b )  

Q Laol (bolt) I p0 

4 .  Monotonic i ty .  

a  > b  i f f  a r  ( c )  % b a ( c )  
-1 1 

i f f  (aolc)po < ( b o l c ) ~ o  
1 

i f f  ao lc  bolc 
1 

5 .  The Archimedean p r o p e r t y  fo l lows  from t h e  Archimedean 

axiom, (no d e t a i l e d  p roo f  i s  g i v e n ) .  By H o l d e r ' s  theorem 

t h e r e  e x i s t s  an a d d i t i v e  homomorphism of A1. De f ine  

$2 (p )  = $ l a ( p ) .  Next we n o t e  t h a t  ap & bq i f f  

aol (p)  2 b o l a ( q ) .  S i n c e  from aoP Q (p)po  Q a o r [ a ( p > l  
1 

independence i m p l i e s  ap Q a r [ a ( p ) l  Q [aoo1a(p)1 po .  

S i m i l a r l y ,  bq Q [boola(q) ]  po .  The r e s u l t  fo l lows  by i n -  

dependence. Thus, ap ; bq i f f  $l ( a )  + $ la (p )  O l  (b )  + 

o l [ a ( q ) l  i f f  $ 1 ( a >  + $ 2 ( ~ )  ' $ l ( b )  + $2(q )  

The uniqueness  fo l lows  from t h a t  o f  H o l d e r ' s  r e s u l t :  we 

do n o t  prove  i t  e x p l i c i t l y .  

Note t h a t  t h e  s o l v a b i l i t y  p r o p e r t y  i s  a v e r y  s t r o n g  

c o n s t r a i n t  which i s  n o t  o f t e n  s a t i s f i e d  i n  s o c i a l  s c i e n c e  

s i t u a t i o n s ,  n o r ,  f o r  t h a t  m a t t e r  i n  p r a c t i c a l  p h y s i c s .  For 

example, a  p l o t  of  e q u a l  loudness  c o n t o u r s  a s  a  f u n c t i o n  o f  



intensity and frequency of pure tones is shown in Figure 1, 

Figure 1 

Equal Loudness Contours as Function of Intensity 6 Frequency 

Frequency 

and we see that ap Q bq is not always solvable. (See Krantz 

et al. 1972:255-6 for full example.) The continuity of the 

components makes clear that ap Q bq has a solution if and 

only if there exist 6, b - E A1 such that Kq % ap % bq; - a 

similar statement holds for the second component. An axioma- 

tization involving this form of restricted solvability is 

given in Chapter Six of Krantz -- et al. 

A second assumption is also troublesome: the Archimedean 

axiom. Louis Nerans (University of California, Irvine) has 

worked various axiomatizations without postulating the 

Archimedean axiom; he develops a representation into non- 



standard arithmetic, and not the real numbers 

Generalization to n Factors 

For n > 3 factors, the axiomatization is rather simpler - 
than in the two-factor case. A general independence notion 

replaces both two-factor independence and double cancellation 

If one takes an arbitrary subset of the factors it is assumed 

that the ordering induced on the product of these factors, 

with the elements of the remaining factors held fixed, is 

independent of that choice of fixed elements. This property 

implies double cancellation on each pair of components. The 

n = 2 result permits one to construct numerical representa- 

tions on each pair of factors, which then in turn can be 

shown to serve to give a general additive representation in 

the n-dimensional case. The details can be found in section 

6.11 and 6.12 of Krantz et al. -- 

Application to Expected Utility Theory 

Conjoint measurement can be applied to the problem of 

calculating expected utility, which has to do with the 

ordering among gambles with uncertain outcomes. A gamble, 

or better, conditional decision can be defined as follows: 

Let A be an event (such as the throw of a die), then the 

decision is a function mapping A into some set C of conse- 

quences, i.e., fA: A -+ C. 

Suppose the set of all conditional decisions is ordered 

by preference relation . The following question is posed 

in the theory of expected utility: under what conditions on 



<V, &> does a probability function P on events and a utility 

function u on V exist such that 

(i) fA & g~ iff u(fA) 2 u(gB) 9 

(ii) if A n  B = $, u(fA l) gB) = u(~~)~(A/A V B) + 

u(gB)p(BIA U B). 
Property (ii) is known as the conditional expected utility 

property. In Chapter eight of Krantz -- et al. a reasonably 

compact set of axioms is given which permit this construction, 

with V restricted to a subset of all such functions, but 

subject to closure assumptions. The proof of the result 

rests on the theorem for conjoint measurement. A rough in- 

dication of its role is given. For each integer n, let 

{Ai), i E 1, . . . ,  n be any set of pairwise disjoint events. 
Let PA be the set of all functions fA . And let the order 

i i 

> '  on X be defined as follows: for fA., gAi E PAi, % 
i=l 1 

iff 

One uses assumed properties of & to show that 

<=El DAi, <) satisfies the axioms of n-dimensional additive 

conjoint measurement, and so there is an additive representa- 

tion. Each set A appears in many such substructures. Let 

QA denote the set of all numerical functions that arise from 

all such structures. A non-trivial step in the proof involves 



showing that any two E @A are related by a positive 

linear transformation. 

Select any fo,fl E D such that fl > fo. For every 

A # $ ,  use solvability to select decisions u(a) [n. (A)] = j , 3 
which is possible by the free linear transformation available. 

For any two disjoint events A and B, let +A,B + +B,A denote 

the additive representation of <DA x DB, 23 normalized so 
that +A,B + +B,A = UA . But by the property of QA, OB, 

there exist constants, which we write as P(A(A u B), P(B(A V B), 

a n d 8  a n d 8  sothat 
A1 BIA 

The final step in the proof involves using the assumptions to 

An example of an empirical test of the properties of the 

conjoint measurement system can be taken from the work of 

Levelt and his colleagues (1971)". The account is taken from 

Krantz et al. (1972:269) 

"In a study of binaural loudness, Levelt, Riemersma and 

Bunt (1971) formed 36 stimuli by presenting all possible 

"Levelt, W.J.M., Reimersma, J.B., and Bunt, A.A. "Binaural 
Additivity of Loudness." Technical Report NR:HB-71-70EX, 
R.U. Groningen, Netherlands, Heymans Pulletins Pschologische 
Instituten. 1971 



combina t i ons  o f  one of  s i x  d i f f e r e n t  1000-Hz s i g n a l s  t o  e a c h  

o f  t h e  e a r s .  The s i g n a l s  were i n  e q u a l - d e c i b e l  s t e p s  from 

20 t o  70 dB Sound P r e s s u r e  Leve l  (SPL). Two s u b j e c t s  o r d e r e d ,  

a c c o r d i n g  t o  l oudnes s  t h o s e  p a i r s  f o r  which t h e  o r d e r i n g  i s  

n o t  p r e d i c t a b l e  by independence .  Using a  computer  program, 

a  b e s t  f i t t i n g  a d d i t i v e  r e p r e s e n t a t i o n  was c o n s t r u c t e d .  To 

a n  e x c e l l e n t  f i r s t  app rox ima t ion ,  i t  was found t o  be o f  t h e  

form 

where I r ,  I l  a r e  t h e  p h y s i c a l  i n t e n s i t i e s  t o  t h e  r i g h t  and 

l e f t  e a r s .  Not o n l y  does  t h i s  s a y  t h a t  t h e  d a t a  a r e  a p p r o x i -  

ma te ly  a d d i t i v e ,  b u t  t h a t  e a c h  a d d i t i v e  s c a l e  i s  a  power 

f u n c t i o n  o f  i n t e n s i t y .  Moreover t h e  dependence i s  d i f f e r e n t  

f o r  t h e  two e a r s .  Combining t h e  above d a t a  w i t h  o t h e r  r e -  

l a t e d  d a t a ,  t h e  p a i r s  o f  exponen t s  were 0 . 4 4 ,  0 .61  and 0 .41 ,  

0 .47  f o r  t h e s e  s u b j e c t s . "  

The expe r imen t  was m o t i v a t e d  by t h e  t h e o r y  o f  c o n j o i n t  

measurement i n  an  a t t e m p t  t o  s e e  whether  t h e  s t r u c t u r e  o f  

t h e  sys tem cou ld  be s a t i s f i e d .  

Models o f  Choice 

The problem of  e r r o r  i n  measurement i s  c h r o n i c  i n  any 

s c i e n c e ,  b u t  i s  p a r t i c u l a r l y  a c u t e  i n  t h e  s o c i a l  ones .  I t  

i s  v e r y  d i f f i c u l t  f o r  s o c i a l  s c i e n t i s t s  t o  f i t  a l g e b r a i c  o r  

a n a l y t i c  models t o  t h e i r  d a t a .  I n  a d d i t i o n  t o  a t t e m p t i n g  

t o  i n c r e a s e  sample s i z e s  on which q u a n t i t i e s  a r e  e s t i m a t e d ,  



two t h e o r e t i c a l  approaches  have been t aken .  

One i s  t o  con t inue  w i t h  a l g e b r a i c  models ,  modifying t h e  

o r d e r i n g  r e l a t i o n s h i p .  I t  i s  p o s t u l a t e d  t h a t  a p p a r e n t  e r r o r  

i n  c h o i c e s  a r i s e  from t r y i n g  t o  f i t  a  n o n t r a n s i t i v e  i n d i f -  

f e r e n c e  r e l a t i o n  by a  t r a n s i t i v e  one .  Th i s  presupposes  t h a t  

s t r i c t  i n e q u a l i t y  i s  a c t u a l l y  t r a n s i t i v e  and p l a c e s  a l l  t h e  

d i f f i c u l t y  i n  t h e  i n d i f f e r e n c e  r e l a t i o n .  

Two c l a s s e s  o f  r e l a t i o n s ,  c a l l e d  i n t e r v a l  and semi-  

o r d e r s ,  which correspond i n  a  r e a s o n a b l e  way t o  t h e  e x i s t e n c e  

o f  t h r e s h o l d s  have been s t u d i e d .  A summary w i l l  be g i v e n  i n  

Chapter  15  o f  volume Two o f  Foundat ions  o f  Measurement. The 

r e a d e r  i s  a l s o  r e f e r r e d  t o  su rvey  a r t i c l e s  by P. C .  F i shburn  

i n  Opera t ions  Research ,  and by Rober ts  i n  t h e  J o u r n a l  o f  

Mathematical  Psychology.  

The o t h e r  approach seems somewhat more promis ing  t o  t h e  

l e c t u r e r .  Here we assume t h a t  t h e  a l g e b r a i c  models a r e  

i d e a l i z a t i o n s o f  u n d e r l y i n g  p r o b a b i l i s t i c  models ,  and s o  t h e  

a t t empt  shou ld  be t o  c a p t u r e  t h i s  s t r u c t u r e .  Thus, we assume 

t h a t  peop le  make c h o i c e s  n o t  acco rd ing  t o  t h e  s t r i c t  p r e f e r e n c e ,  

bu t  p r o b a b i l i s t i c a l l y ,  i . e . ,  n o t  a  - > b ,  r a t h e r  P r ( a  - > b ) .  

1 I n  t h e  s p e c i a l  b i n a r y  c a s e  where P = (0, Z, 1 )  t h e  model 

should  r educe  t o  t h e  a l g e b r a i c  f o r m u l a t i o n  a l though  a s  y e t  

t h a t  g o a l  is  n o t  r e a l l y  f u l f i l l e d .  The problem seems t o  be 

t h a t  t h e r e  is  no v e r y  n a t u r a l  way of  p u t t i n g  t o g e t h e r  t h e  

unde r ly ing  a l g e b r a i c  s t r u c t u r e  o f  e i t h e r  a semigroup ope ra -  

t i o n  o r  a  C a r t e s i a n  p roduc t  w i t h  t h e  p r o b a b i l i s t i c  o r d e r i n g  

- -  more of  t h a t  l a t e r .  



Some references of interest for the following discussion 

include Luce and Suppes (1965) , Tversky (1972) and Tversky 
and Russo (1969) . * 

Probabilistic Ordinal Theory 

Let the set (finite or infinite) of objects among which 

a person has preference be denoted A (for alternatives). Any 

finite subset, R, S, . . .  may be presented from which the 
subject is to choose one. For x E R, denote by pR(x) the 

probability that he chooses x when R is presented. Put 

another way, when R is the choice set, it is taken to be a 

sample space and it has a probability measure p Note that R' 
this is not a conditional probability; in particular for R C S ,  

pR(x) need not equal pS(xl~). Obviously, however we do 

anticipate some sort of relation among the several probability 

measures, and one task facing psychologists is to try to dis- 

cover it. 

Most of the proposals that have been made have a common 

theme, namely, the existence of an underlying numerical 

quantity, usually called utility, from which the probability 

*Luce, R.D. and P. Suppes (1965) "Preference, Utility 
and Subjective Probability," in R.D. Luce, R.R. Bush and E. 
Galanter (eds.) Handbook of Mathematical Psychology, Vol. 3, 
New York, Wiley, pp. 249-410 (see 331-350 in particular). 

Tversky, A. (1972) "Elimination by Aspects: A Theory 
of Choice", Psychological Review, 79:281-299. 

Tversky, A., and J. E. Russo (1969) "Substitutibility 
and Similarity in Binary Choices", Journal of Mathematical 
Psychology 6:l-12. 



i s  somehow computed. E x p l i c i t l y ,  l e t  u s  suppose  t h a t  t h e r e  

i s  a  f u n c t i o n  u:A + Re and f u n c t i o n s  Fn o f  n  a rguments  s u c h  

t h a t  when ( R I  = n ,  

p R ( x )  = Fn[u (x )  ; u ( y l )  9 .  , U ( Y ~ - ~ ) I  . 
Pe rhaps  t h e  b e s t  known example o f  t h i s  t y p e  i s  t h e  one c a l l e d  

t h e  s t r i c t  u t i l i t y  model ,  i n  which t h e  F ' s  a r e  o f  t h e  form 

The l e c t u r e r ' s  work on t h i s  model i s  r e p o r t e d  i n  Luce (1959 ) . *  

For  t h e  p r e s e n t ,  however ,  l e t  u s  examine t h e  g e n e r a l  

i d e a ,  b u t  o n l y  f o r  c h o i c e  between p a i r s .  For  s i m p l i c i t y  o f  

n o t a t i o n ,  we w r i t e  

P ( X , Y )  P{x,y} l x )  = F [ u ( x )  , u ( y ) l  

I n t u i t i v e l y ,  i f  we e i t h e r  i n c r e a s e  t h e  u t i l i t y  o f  x o r  de -  

c r e a s e  t h a t  o f  y ,  we a n t i c i p a t e  an  i n c r e a s e  i n  p ( x , y ) ,  which 

means we must assume F  i s  s t r i c t l y  d e c r e a s i n g  i n  t h e  s econd  

one .  When t h e  b i n a r y  c h o i c e  p r o b a b i l i t i e s  a r e  o f  t h i s  fo rm,  

t h e y  a r e  s a i d  t o  s a t i s f y  s i m p l e  s c a l a b i l i t y .  

Al though  s i m p l e  s c a l a b i l i t y  does  n o t  seem v e r y  r e s t r i c t i v e ,  

it i s  a n  e m p i r i c a l  q u e s t i o n  whe the r  p r e f e r e n c e  ( o r  o t h e r )  

judgments  f u l f i l l  i t .  One prob lem i n  answer ing  t h i s ,  i s  t o  

t r a n s f o r m  t h e  t h e o r e t i c a l  n o t i o n  o f  s i m p l e  s c a l a b i l i t y  i n t o  

*Luce,  R .  D .  (1959) I n d i v i d u a l  Choice  Behav io r :  A 
T h e o r e t i c a l  A n a l y s i s ,  New York, Wiley.  



i s  somehow computed. E x p l i c i t l y ,  l e t  u s  suppose t h a t  t h e r e  

i s  a  f u n c t i o n  u:A + Re and f u n c t i o n s  Fn o f  n  arguments such  

t h a t  when ( R I  = n ,  

p,(x) = F n [ u ( x ) ;  u(y l )  . '  u ( ~ ~ - 1 ) 1  . 
Perhaps t h e  b e s t  known example of t h i s  t y p e  i s  t h e  one c a l l e d  

t h e  s t r i c t  u t i l i t y  model, i n  which t h e  F ' s  a r e  o f  t h e  form 

The l e c t u r e r ' s  work on t h i s  model i s  r e p o r t e d  i n  Luce (1959) .*  

For t h e  p r e s e n t ,  however, l e t  u s  examine t h e  g e n e r a l  

i d e a ,  bu t  on ly  f o r  c h o i c e  between p a i r s .  For s i m p l i c i t y  of 

n o t a t i o n ,  we w r i t e  

P ( ~ , Y )  P{, Ix) = F[u(x)  , u ( y > I  YY) 

I n t u i t i v e l y ,  i f  we e i t h e r  i n c r e a s e  t h e  u t i l i t y  o f  x o r  de-  

c r e a s e  t h a t  o f  y ,  we a n t i c i p a t e  an i n c r e a s e  i n  p ( x , y ) ,  which 

means we must assume F  i s  s t r i c t l y  d e c r e a s i n g  i n  t h e  second 

one .  When t h e  b i n a r y  c h o i c e  p r o b a b i l i t i e s  a r e  o f  t h i s  form, 

t h e y  a r e  s a i d  t o  s a t i s f y  s imp le  s c a l a b i l i t y .  

Although s imple  s c a l a b i l i t y  does n o t  seem v e r y  r e s t r i c t i v e ,  

it i s  an e m p i r i c a l  q u e s t i o n  whether  p r e f e r e n c e  (o r  o t h e r )  

judgments f u l f i l l  i t .  One problem i n  answer ing  t h i s ,  i s  t o  

t r a n s f o r m  t h e  t h e o r e t i c a l  n o t i o n  o f  s imple  s c a l a b i l i t y  i n t o  

*Luce, R .  D .  (1959) I n d i v i d u a l  Choice Behavior :  A 
T h e o r e t i c a l  A n a l y s i s ,  New York, Wiley. 



a testable property, i.e., one that is stated wholly in 

terms of the probabilities, without mention of either u 

or F. The following formulates three observable properties 

that are each equivalent to simple scalability. 

PROPOSITION 1. Assuming binary probabilities not equal to 

0 - or 1, the property - of simple scalability is equivalent to 
each of the following: 
- A -  

Strict stochastic transitivity (SST): If p(x,y) , 1/2 - and 

p(y,z) , 1/2, then p(x,z) 2 max [pCx,y),p(y,z)];moreover -- if both 

> in the hypothesis are > , then the conclusion is > . - -- 
Substitutability: p(x,z) 2 p(y,z) iff p(x,y) 2 1/2. 

Independence: p(x,z) ,p(y,z) iff p(x,w) ,p(y,w). 

Proof: Suppose p satisfies simple scalability and that 

p(x,y) 1/2 and p(y,z) - > 1/2. Since F is strictly increasing 

in the first argument and 

P(X,Y) = F[u(x),u(y)l 2 1/2 = F[u(y)l = p(y,y), 

U(X) 2 u (y) . And so 

P(~,Y) = F[u(x) ,u(y)l F[u(y) ,u(z)l = p(y,z). 

The other inequality follows similarly from the fact that F is 

decreasing in the second argument. The case of strict in- 

equalities follows from the strict monotonicity of F. 

Suppose SST holds, but that substitutability is false, 

i.e., either 

(1) p(x,z) > p(y,zI and p(y,x) , 1/2 
or (2) p(x,z) = p(y,zI and P(~,Y) # 1/2. 

For (i), there are two subcases. If p(x,z) - > 1/2, then SST 



implies p(y , z) 2 p(x ,z) , contrary to hypothesis. If 

p(y,z) < 1/2, then p(z,y) > 1/2 which with p(y,x) 2 1/2 

yields (SST) p(z,x) - > p(z,y), contrary to hypothesis. For 

(ii) the arguments are similar and are left to the reader. 

Assuming substitutability, independence is an immediate 

consequence. 

Finally, we assume independence and prove simple 

scalability. Fix z, and set u(x) = p(x,z). Define F by 

F[u(x) ,u(y)l = P(~,Y) 

F is well defined for if u(x) = u(yt), then p(x,z) = p(xl,z), 

whence by independence, p (x, y) = p (xl , y) . Also, p (y , z) = 

p(yl,x), and so p(y,xl) = p(y',xt). Therefore, 

F[u(x) ,u(y)l = P(~,Y) = p(x' ,Y') = F[u(xl) ,Y(Y')~. 

Reversing this argument shows that F is 1:l in each argument. 

To show it is strictly increasing in the first one, suppose 

u(xl) > u(x), i.e., by definition, p(x',z) > p(x,z), whence 

by independence 

F[u(x) ,u(y)l = p(xl ,Y) > P(~,Y) = F[u(x) ,u(yIl 

The proof that F is strictly decreasing in the second com- 

ponent is similar. 

The following example was first given by Savage to show 

that the strict utility model cannot be generally correct; it 

applies to any case of simple scalability. Suppose a young 

child is presented with a choice between a bicycle (x), and 

a pony ( 2 ) .  He vacillates at the bicycle dealer1 s, and to 

enhance theattractiveness of the bicycle, the dealer offers a 

1 siren on the bicycle (y). Evidently p(y,x) >> . Yet 



clearly, if the child wanted the bicycle in the first place 

he would still want the bicycle, and if he wanted the pony 

the additional utility of the siren would be most unlikely 

to change his mind. So we conclude p(x,z) = p(y,z). But 

these two probability statements are inconsistent with 

substitutibility, and so with the hypothesis of simple 

scalability. 

Beyond this experiment simple scalability is not satis- 

fied in actual experimental data. In preferences for greys, 

C. H. Coombs (J. - - exp. Psychol., 1958, 55, 1-7) has shown that 

certain selected triples of stimuli - -  chosen so that they 

span the subject's ideal grey - -  systematically violate SST. 

D. H. Krantz (J. - math. - Psychol, 1967, 4, 226-245) has shown 

that simple scalability does not hold for judgments of 

similarity between pairs of monochromatic colors. Specifically, 

substitutability is violated since whether or not one alterna- 

tive can be substituted for another depends upon the context. 

Finally, Tversky and Russo (J. - math. - Psychol, 1969, 6, 1-12) 

have exhibited serious failures in independence when subjects 

judge the size of rectangles and lenses of various proportions. 

"It was found that the similarity between stimuli facilitates 

the discrimination between them. But since the similarity 

between two stimuli can be varied without changing their 

scale values, simple scalability, and hence independence, must 

be violated.'' (p. 11). 

These data require that we look for a more general class 

of models than those just considered. One important proposal 



retains the original algebraic idea of a numerical utility 

function over the alternatives and that, of the alternatives 

presented, the one having the greatest utility is selected. 

The new wrinkle is that we do not assume that the utility 

stays put each time a choice is made. Rather the utility 

associated with each alternative is a random variable, and 

the alternative with the greatest existing utility at the 

time of choice is selected. In particular, let u(x) be 

the random variable associated with alternative x (the sample 

space is implicit), then the probability of selecting x from 

R is 

pR(x) = Pr [U(x) 2 u(y), for all y E R] . 

In this case, the choice probabilities are said to satisfy a 

random utility model, which is an independent one if the 

random variables are independent. 

Some questions must be asked about the model. First, is 

it really more general than simple scalability? The answer 

is yes. Second, are there examples of simple scalability that 

are also random utility models? The answer is yes, and one 

case is formulated as: 

PROPOSITION 2: If a set of choice probabilities satisfy a strict - - - - -  -- 
utility model, -- then they satisfy an independent random utility one 
Proof. Let the v's defining the strict utility model be given, 

and let u(x), x E A ,  be independent random variables with distri- 

but ion functions 



Now 

= lo V ~ X )  exp ( i ~  (y)t)dt 
- m YcR 

And, third, what properties of the probabilities are equivalent 

to this model, and do the data satisfy these properties? No 

general answer is now known to this question. However, one 

necessary property is known. This says that any reduction in 

the size of the choice set never decreases the probability 

of choosing one of the remaining alternatives. Formally, the 

choice probabilities are regular if for all x E R C S ,  then 

P,(x) , ps(x). 
An open problem is to find observable properties that are 

equivalent to the random utility model. 

Some other references to the work in constant utility 

models and random variable models are to be found in Luce and 



Suppes (1965). 

More Recent Developments 

Tversky (1972) has constructed a model which overcomes 

the difficulties in the constant utility model, and which, 

intuitively, makes some psychological sense. He calls his 

model the Elimination by Aspects (EBA) model and motivates it 

as follows (Tversky, 1972 : 296) : 

"The EBA model accounts for choice in terms of a covert 

elimination process based on sequential selection of aspects. 

Any such sequence of aspects can be regarded as a particular 

state of mind which leads to a unique choice. . . . According 
to the present theory, choice probability is an increasing 

function of the values of the relevant aspects. Indeed, the 

elimination-by-aspects model is compensatory in nature despite 

the fact that at any given instant in time, the choice is 

assmued to follow a conjunctive (or lexicographic) strategy. 

In the proposed model, aspects are interpreted as de- 

sirable features; the selection of any particular aspect 

leads to elimination of all alternatives that do not contain 

the selected aspect." 

The model will be formulated with Tversky's notation, 

which differs only in minor ways from the notation that has 

been used up to this point. 

Let T be the set of alternatives, and T' be the corres- 

ponding set of aspects. 

Define a function f: T + zTt, i.e., a mapping from T 

to the power set of T'. So for each x E T, f(x) is interpreted 



as the set of aspects associated with x, and is abbreviated 

as x l .  For each A C  T, define A' = IaJa ex1 for some 

x E A) and A' = Iala E x' for all x E A). If a E T', let 

A a =  Ixlx E A & a E x'). 

The model postulates that there exists a positive weighting 

function u on T 1  - TO (u: T' - TO -t ~e'), such that 

This is a recursive expression in the choice probabilities. 

Several properties of the model are: 

1. If the alternatives are such that they have no aspects in 

common, then the model reduces to the strict utility model, 

i.e., the expression above takes the form 

2. The model satisfied regularity, i.e., 

3. The model exhibits moderate stochastic transitivity, i.e., 

Although data have been reported in which strict stochastic 

transitivity fails, it appears that moderate stochastic transi- 

tivity is sustained. Of course, these statements must be 

accepted with some caution because we never have probabilities 



themselves, but only estimates of them. Thus if 

1 1 
p(x,y) 2 is near Z, it is perfectly possible for 

1 6 (x,y) < etc.. Thus, even if a property such as moderate 

stochastic transitivity were strictly true, apparent violations 

of it may very well occur in the estimates. Since the 

statistical decision problem has never been properly formulated 

for these kinds of statements, it is a matter of judgment 

whether the model is invalid or not. 

Probabilistic Additive Theory 

Since we know little about the probabilistic version of 

ordinal choice, it is not surprising that we know even less 

about how to combine the probability model with the additive 

structure of extensive or of conjoint measurement. Three 

minor observations can be made: 

1. Physicists make the assumption that measurement errors 

have a normal distribution in extensive measurement. This 

cannot be strictly correct since a normal variable can have 

arbitrarily large negative values whereas the measurements 

themselves are always positive. What we would like is a 

theory of the observed random variables. The theory should 

exhibit two properties, at least. First, the random 

variables should be positive. Second, one should not be 

able to take advantage of the decomposability of extension 

measures to reduce the error of measurement below that given 

by the distribution function of the theory. 

If we let @(a) denote the random variable associated with 



object a, then the latter property suggests, 

Q(aob) = @(a) + @(b) 

from which it follows that 

EQ(aob) = E@(a) + E@(b), 

and so EQ behaves like the ordering extension measure. Assum- 

ing independence, the distribution function of @(sob) will be 

the convolution of that of @(a) with @(b). It seems plausible 

to demand that the family of distributions should be closed 

under convolutions. One well known family that has this 

property is the gamma, 

X$(a)tO(a) -1,-Xt 
P[@(a) = t] = 

r [ 4  (a) I 

In this case, 

- $(a) E@(a) - - , 
SO we must assume 

$(sob) = $(a) + $(b) 

The family also approaches the normal distribution as $(a) 

becomes large. A problem, then, is to give a plausible 

axiomatization of probabilistic extension measurement which 

leads to this (or some other similar) distribution function. 

In the conjoint measurement case we have the problem 

of finding a reasonable axiomatic structure that will handle 

the natural discontinuities that must occur. Suppose 

A and A 2 , ~ 2  is an ordering (say, by preference) then 
-1 

surely p(ap > bq) = 1, when a > - b, p L~ q. Yet a small 
-1 



reduction sufficient to reverse the first inequality may cause 
1 a large change in p, say to near . 

The Mcasurement of Color 

The material presented in this lecture is part of 

Chapter 14 of Volume Two of Krantz et al., which is in 

preparation. 

The physical description of incoherent light (omitting 

spatial and temporal variations) is given by the radiant 

energy density at each wave-length in the visible part of 

the electromagnetic spectrum. Thus we have functions a(X) 

defined for between red beginning at 400 nanometers (nm) 

through violet ending at 700 nm (1 nm = lo-' meters), giving 

the radiant energy density at wave-length A. 

One of the intriguing aspects of color perception has 

to do with the range of possible combinations of colored 

light. For example, one is familiar with such combination 

as greenish-blue, and reddish yellow, but a reddish green is 

never perceived, nor is bluish yellow. A combination of red 

and green will appear either as grey or red or green, but not 

a combination. (The colors will be attentuated, 'but never 

mixed.) We mention this only as evidence that there is more 

to the perception of color than simple superposition of the 

percepts due to monochromatic lights. 

Similarly, it is of interest that colors that are 

visually matched may be composed of quite distinct frequency 

distributions of wave-lengths. These two characteristics do 



n o t  h o l d  f o r  a u d i t o r y  s t i m u l i .  I t  does n o t  o c c u r  t h a t  sub-  

j e c t s  match sounds  which a r e  g e n e r a t e d  by d i f f e r e n t  d i s t r i -  

b u t i o n s  o f  ene rgy  o v e r  a u d i t o r y  f r e q u e n c y ,  and s o  a u d i t o r y  

s t i m u l i  do n o t  e x h i b i t  t h e  same s o r t  o f  compress ion  o f  i n -  

f o r m a t i o n .  

A Theory o f  Color  

The f o l l o w i n g  p r i m i t i v e  n o t i o n s  a r e  u t i l i z e d  i n  deve lop-  

i n g  a  t h e o r y  o f  c o l o r .  We b e g i n  w i t h  a  s e t  A o f  a l l  s p e c t r a l  

d i s t r i b u t i o n s  o f  a(X) and two p h y s i c a l  o p e r a t i o n s ,  8: A X A + A ,  

which r e p r e s e n t  t h e  a d d i t i o n  o f  t h e  d i s t r i b u t i o n s  a  (A) + b(X),  

and * :  ~ e +  X A -+ A ,  which p e r m i t s  u s  t o  change a l l  e n e r g i e s  

by a  g i v e n  f a c t o r ,  i . e . ,  t a ( ~ ) .  The i d e a l i z e d  p sychophys i ca l  

d a t a  t a k e  t h e  form o f  an e q u i v a l e n c e  r e l a t i o n  s C A  X A where 

a(X) s b(X) r e p r e s e n t s  t h e  judgment t h a t  t h e  two d i s t r i b u t i o n s  

a(X) and b(X) a r e  o f  t h e  same c o l o r .  

D e f i n i t i o n s  

The s t r u c t u r e  < A ,  O ,  *> i s  a  convex cone i f  

( i )  O i s  a s s o c i a t i v e ,  commutat ive and s a t i s f i e s  

t h e  c a n c e l l a t i o n  p r o p e r t y ,  i . e . ,  i f  a8c  = b@c 

t h e n  a  = b .  

( i i )  t *  (u*a)  = ( t x u )  *a 

tA(aOb)  = ( t e a )  O ( t x b )  

( t + u ) * a  = t * a  8 u*c 

1 *a = a  



Behavioral Aspects 

The system <A, 8, *, %> is a Grassman structure (after 

the mid 19th century theorist who worked on color and stated 

the properties of the equivalence relation). It has the 

following properties. 

(1) <A, 8 ,  *> is a convex cone 

(ii) % is an equivalence relation (with the usual problems 

of assuming an empirical relation is an equivalence 

relation). 

(iii) a % b iff a@c % b8c, (i.e., if two colors match and 

one adds (subtracts) the same light to (from) both, 

they will continue to match). 

(iv) a % b implies t*a % t*b. (This is valid for a large 

range of distributions. It does not hold for very 

low intensities.) 

Definition of m-chromatic 

A structure is m-chromatic iff. there exists an m-element 
m 

basis al,.. . ,am such that 1 ti*ai % *ai + ti = ui . A 
l 

basis is maximal in the sense that there exists ao, ..., a m 
n 

and ti # ui, such that 1 ti*ai % (Only m of these 
0 

are basic and they can generate the rest.) 

The Trichromatic Nature of Color 

There is very good evidence (contrary to a common mis- 

interpretation of the Land experiments) that color is 3 -  

chromatic in the following sense, given the three suitably 



chosen colors A1, A2, A3 (for example, red, green and blue) 

it is possible to take any distribution a, and find coeffi- 

cients ti such that either 

or (ii) a8tlal % tZAa2 8 t3*a3 

or (iii) a8tZxa2 % tl*al 8 t3*a3 

or (iv) aOt3*a3 % tlXal 8 tZXaZ 

is empirically true. 

Theorem (see Chapter 14, in Vol. I1 of Krantz et. al. for - - 
proofs) 

If <A, 8 ,  * >  is a Grassman structure, there exists a 

vector space iV, +, . z  over the reals and a convex cone C C V ,  

and a function + :  A -+ C, such that 

(i) +(a@b) = +(a) + +(b) 

(ii) +(txa) = t+(a) 

(iii) if xeV, there exist c,d such that x = @(c) - $(d) 

(iv) a % b  iff @(a) =@(b) 

Then if we have another function with the same structure 

they are all related by a non-singular linear transformation. 

Corollary 

If the Grassman space is m-chromatic, then the vector 

space is m-dimensional. 

In practice, the real vector space is utilized using 

the above matching data and assigning 



if (i) 

-tl ,t2 ,t3 if (ii) 

$(a) = 
tl,-t2,t3 if (iii) 

There are various standardized coordinate systems. The 

choice of a particular coordinate systems has been made on 

at least one of three criteria: ease of standardization, 

computational convenience, or representation of additional 

empirical relations on colors, beyond @, *, and Q. These 

criteria have led to three different standard coordinate 

systems adopted by the CIE (Commission Internationale d' 

&lairage). One of these,the R,G,B system, is based on red, 

green and blue instrumental primaries that can easily be 

standardized. Another, the X , Y , Z  system, corresponds to no 

possible set of instrumental primaries; rather the matrix 

(aij) is chosen such that all the coordinates 4; are non- 

negative, and such that the second (4; or y) coordinate 

represents luminance (approximately, another empirical rela- 

tion on colors based on certain special methods of brightness 

matching). This system is extremely convenient computationally, 

because of positive numbers and because the luminance of light 

is directly represented by one coordinate. The third set 

of coordinates is the uniform chromaticity system (UCS), 

which attempts to give an approximate representation of 

empirical color-discriminability and color-similarity relation% 



by means of Euclidean distances that take the UCS $ '  co- 

ordinates as orthogonal axes. 

A standard way of representing chromaticity coordinates 

can be seen in the following figure which gives the 

chromaticity diagram for the X,Y,Z coordinate system of the CIE. 

The abscissa is q1 = x = X/(X + Y + Z); the ordinate is 
- 
4 2  = y = Y/(X + Y + Z). The curved locus of monochromatic 

lights (spectrum locus) is shown, together with the locus 

of a number of other lights. Point A is the locus of the 

light distribution from a tungsten filament lamp (maetameric 

to black-body radiation at 2842'K), and the other points 

shown by two-digit numbers that correspond to that light 

distribution after modification by Kodak Wratten gelatin 

filters with the corresponding numbers. 

Theoretical Elaborations of Color Measurement. 

The theoretical elaboration that shall be examined here 

has to do with coding. Investigators attempt to discover 

the nature of perceptual processes under the assumption that 

sense data has to be coded information, and codes are defined 

as numerical functions operating on the stimuli. A potential 

code appears to be derivable from the fact that different 

pigments in the eye absorb light quanta differentially. The 

fact that such pigments exist seems clear - -  the slow re- 

covery of the eye to stimulation indicates that pigments are 

bleached and reinstated over time. There are a number of 

different pigments, and it seems logical to utilize the 



FIGURE 2. Chromaticity coordinates, showing the spectrum locus 
and l o c i  of l ights  from a tungsten lamp (CIE Standard Source "A") 
modified by various Kodak gelat in f i l t e r s .  (From Kodak F i l t e r s  
for  S c i e n t i f i c  and Technical Uses. Eastman Kodak Co. B-3, 1970.) 



proportion of quanta captured by the pigment to devise 

quantum-catch functions of the following kind 

pj (a), j = 1,. . .,K. 
There are most likely three photopigments and they are com- 

plete in the sense that a function g:A + Re is a code if 

a Q b then g(a) = g(b) . A set gi of codes is complete if 

gi(a) = gi(b), i = 1, ..., n, iff a % b. A code is linear 

if g (a9b) = g (a) + g (b) and g (t*a) = tg (a) . 
But it is not yet clear exactly how the pigments relate 

to the codes that are suggested by various psychological 

phenomena. 

For example, let us examine the psychological theory 

first proposed by Hering in the late 19th century and 

developed in the past twenty years by Hurvich and Jameson of 

the University of Pennsylvania. The basic idea is as follows. 

For any stimulus we attempt to ascertain the amount of red- 

ness orgreenness and the amount of yellowness or blueness 

it exhibits. Select al to be a greenish color and bl to be 

a reddish color, such that a19bl is neither. The empirical 

question if a is reddish rather than greenish is how much al 

has to be combined with a to get rid of the reddishness, i.e., 

find t such that t*a O a is neither red nor green. If a is 1 

reddish, then we find t such that t*a19a is neither red nor 

green. Similarly we determine relative to a given yellow 

and glue, how much yellow or blue a contains. For monochro- 

matic hues we may plot the value of t versus wave length to 



show the nature of color perception as a function of wave 

length. 

Figure 3 

Color Perception with Changing Wave Length 
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Note that at wave length y the stimulus has neither red nor 

blue, and so it is pure yellow; at point g it is pure green, 

at r red; and at b blue. Empirically the points r and y are 

stable across subjects, whereas g and b are not so stable, 

leading to different perceptions as to the relative amounts 

of green and blue in a stimulus. 

To formulate this idea as a theorem, we need several 

definitions. In a Grassman structure < A ,  @, *,  Q>, define 

The structure is proper if En = $I. 

If E C  A,  then < A ,  8, *, E> is an equilibrium structure 



(i) a E A implies there exists a' e A such that 

a@a EE. 

(ii) Suppose a c E. Then b E E if a@b~E. 

(iii) a E E implies t*a~E. 

In such a structure we may define %E as 

a%Eb iff there exists C such that a@c~E iff b0ccE. 

It can be shown that if <A, 61, * ,  E> is an equilibrium structure, 

then <A, 8, * ,  % > is a Grassman structure, and also we can E 

speak of the dimensionality of the equilibrium structure as 

that of its individual Grassman structure. 

In the following result, think of A1 as the set of stimuli 

that are neither reddish nor greenish and A2 as those that are 

neither greenish nor blueish. 

Theorem. Suppose <A, @ ,  * ,  %> is a proper trichromatic'Grass- 

man structure with A ~ C  A, i = 1,2. Assume, 

(1) (Code axiom) a % b and a c Ai implies b E Ai 

(2) (Linearity) If a E Ai then t*aeAi and beAi iff a8beAi. 

(3) (Hue components) There exist a i,bic ( ~ ~ n  A2) - Ai 

such that ai@bicAi, then 

(i) <A, @ ,  * ,  Ai> is a 1-dimensional equilibrium 
structure 

(ii) <A, B, *, Al n A,> is a 2-dimensional equilibrium 

structure 

and <A,n A2, B, * ,  %> is a proper 1-chromatic 

Grassman structure. 

(iii) There exist real $i, i = 1,2,3, such that 



(a1, a2, a3) represents <AJ 8, *, s> 
(ml, a,) represents <A, 8, *, Alfl , 
a1 represents <A, 8 ,  * ,  Ai>, i = 1,2 and 

a3 represents < ~ ~ n  A2 *,  I>. This is 

unique up to 

(iv) If, in addition, there exists s b 3  s (inter- 

preted as equal brightness) such that 

<A, 8 ,  * ,  sB> is a proper 1-chromatic Grass- 
mann structure, then s = s / A l n  A2 and a3 B 
can be chosen to represent sB and the unique- 

ness is then, 

when al, a2 f 0 and a3 > 0 . 
Currently work is being carried out attempting to relate 

this psychological code to the photopigments. This is subject 

to various empirical constraints, such as providing a natural 

account of the several kinds of color blindness (see Chapter 14) 



The Psychophysics of Auditory Intensity 

In the final section of these lectures we will explore 

some experimental and theoretical work concerned with 

various aspects of the perception of changes in auditory 

intensity. Some of the results may apply to intensive as- 

pects of other stimuli, such as brightness, but there are 

so many differences when one passes from the study of one 

modality to another that one cannot count on a direct carry- 

over. We begin by giving a sketchy background of some 

psychophysical methods. 

The basic questions that we explore have to do with how 

the organism manages to process discrete changes in auditory 

stimuli and to answer simple questions about these changes. 

These questions are whether a change in auditory stimuli has 

occurred (detection), which of several possible changes has 

occurred (recognition), which of two changes is the larger 

(discrimination), and how large is a given change (scaling). 

In the classical view, the organism is perceived as a 

machine, or a transducer, operating on a signal. Even though 

experimenters knew this wasn't correct - -  for example subjects 

make errors and the error rates were maintained at low levels 

(two to five per cent) by stern reprimands - -  they believed 

that anything aside from the sensory transduct ion was ex- 

traneous and relatively unimportant. But during World War 

11, with the growth of interest in sonar and radar signal 

detection, a theory of ideal signal detection was worked out 



and by the early 1950's psychologists had begun to adapt this 

theory of signal detectibility to their own use (see Green and 

Swets 1966)". One of the more important empirical phenomena 

to arise from this work is the ROC curve ("receiver operating 

characteristic curve") or iso-sensitivity curve*" which can be 

described as follows. 

Imagine a situation in which one of two possible signals, 

so or s1 is presented on each trial and the observer tries to 

identify which has been presented. One of the signals could be 

the null signal, in which case it is a detection experiment; 

otherwise it is a recognition study. Suppose the choice of 

presentations is random, with sl occurring with probability P. 

Associated with every signal-response pair is a payoff which 

also serves as information feedback. We can summarize the 

experimental information in the following matrix: 

r 1 '0 

1-P so C: :: j 
Assuming that the responses are statistically independent 

of both the signal presentations and the response on earlier 

*Green, D. M., and J. A. Swets (1966) Signal Detection 
Theory and Psychophysics. New York. Wiley. 

**ItIso-sensitivity" is an alternative term proposed in 
Luce, R. D. (1963) "Dectection and Recognition" in R. D. Lucc , 
R. R. Bush, E. Galanter (eds.) Handbook of Mathematical Psy- 
chology. New York. Wiley, pp. 103-189. 



trials, as is approximately the case for well-trained observers, 

the observed frequencies N. of response r. to the presenta- 
l j  I 

tion of signal si can reasonably be thought of as providing 

us with estimates of underlying conditional response proba- 

bilities. In particular, if we abbreviate 

p.. = Pr(r. Is.) 
1 I  I 1  

where 

then we estimate p. by 
1 j  

Observe that there are only two independent conditional 

probabilities, and so the data are summarized by just two 

numbers. It is conventional in this literature to use p 0 1 

and pll, whereas statisticians usually focus on the two error 

Po1 and P10 ' 

The important empirical fact is that the signals alone 

do not uniquely determine pol and pll, as was implicit in the 

classical view. Rather, if we vary the presentation probability 

P or the payoff 0.. or .the instructions to the observer, under 
1I 

each motivational condition we obtain a different pair of 

numbers. Moreover, the values are much too different to be 

accounted for by variability in the estimates. Indeed, they 

appear to run from (0,O) to(1,l) and to arise from a smooth 



curve such as that shown in Figure 4. 

Figure 4. The ROC Curve 

The classical approach focussed attention on pll and ignored 

pol except to keep it small. Note that in this region the 

slope is large and so the value of pll is very sensitive to 

small errors in estimating pol. 

One curious example of ROC analysis is A. Stunkard's 

(University of Pennsylvania) data on obesity. In this work he 

placed a baloon in the stomach of his subjects in order to 

study the relationship between stomach contractions and re- 

ported hunger, Let sl denote a time period with a contraction 

and so one with no contractions, and let response 1 denote 

hunger, and 0 nohunger, then each subject is represented by 

a point in the unit square. Stunkard found that the data 

from a number of subjects appeared to sweep out an ROC curve, 

but that there were variations in the reports of hunger: 

obese men overreported, and obese women underreported in 

comparison to normals, but all seemed about equally sensitive 

to contractions. 



There is another way of plotting ROC curves. If p is 

a probability and N (0,l) denotes the normal density with 

mean 0 and variance 1, then the normal deviate is the value 

Z such that 

P ' ]  
N (0,l). Plotting ROC data in 

- 03 

this manner usually yields an approximately straight line 

representation of the following kind: 

1 

increasing 

in signals 
0 

indicating that the underlying distributions are approximately 

normal. An increase in the intensity separation of signals 

generates a family of more-or-less parallel lines that move 

upward. The value of Z1, corresponding to Z0 = 0 is a measure 

of detectability; it is denoted by dl. 

Another approach to signal detection involves two inter- 

vals with one signal in the first and the other signal in 

the second interval. So the stimuli may be written <so, sl> 

and <s so>. The subject is required to report which interval 

contains the more intense signal. The subject can be expected 

to do better in this design than in the single interval one, 

since he has two trials, as it were. We attempt to see how 

this two-alternative iorced choice procedure relates to the 

single interval case. 



Let us suppose that when signal si is presented it re- 

ceives an internal representation X, which is a random 

variable with density fi (which is approximately normal). 

His response rule is to establish a criterion Z and to say 

all observations X < Z are called signal 0, and all X - > Z 

are 1. Thus, 

Graphically the situation is as follows: 

Turning to the two interval case, let us consider the proba- 

bility of a correct response on the assumption that the two 

observations X1 and X2 are independent random variables. We 

suppose that he reports sl to be located in the interval with 

the larger observation. The probability of a correct response 

is simply the probability that the larger observation occurs 

with sli, i.e., 

X 

fi(y1dy. 
- m 

Making the change of variables from above, 



which i s  e a s i l y  s e e n  t o  be t h e  a r e a  ove r  t h e  one i n t e r v a l .  

I n  t h i s  way a  connec t ion  i s  f o r g e d  between t h e  two kinds of  

expe r imen t s .  Note t h a t  we make t h e  assumpt ions  t h a t  t h e  

s u b j e c t  i s  o p e r a t i n g  on an  u n d e r l y i n g  random v a r i a b l e  whose 

d i s t r i b u t i o n  i s  u n i q u e l y  de t e rmined  by t h e  s i g n a l  p r e s e n t a t i o n  

and t h a t  t h e  d e c i s i o n  p rocedure  o p e r a t e s  on t h i s  r e p r e s e n t a -  

t i o n  o f  t h e  s i g n a l .  

I n  t h e  work abou t  t o  be d e s c r i b e d ,  two f e a t u r e s  d i s t i n -  

g u i s h  t h e  approach  from b o t h  t h e  c l a s s i c a l  and s i g n a l  de-  

t e c t a b i l i t y  approach .  F i r s t ,  t ime  i s  i n c l u d e d  i n  t h e  p roces s  

d e s c r i p t i o n  - -  and second n e u r o p h y s i o l o g i c a l  d a t a  t h a t  have 

been c o l l e c t e d  on s i n g l e  a u d i t o r y  f i b r e s  d u r i n g  t h e  p a s t  t e n  

y e a r s  i s  used  t o  s u g g e s t  t h e  n a t u r e  of  t h e  model. 

P h y s i o l o g i c a l  Data 

An a u d i t o r y  i n p u t  can be c h a r a c t e r i z e d  a s  a  cont inuous  

f u n c t i o n  o f  t i m e ,  f o r  example,  a s  p r e s s u r e  a t  t h e  eardrum 

a s  a  f u n c t i o n  o f  t ime .  When one measures t h e  e l e c t r i c a l  

a c t i v i t y  i n  i n d i v i d u a l  n e r v e  f i b r e s  of  t h e  p e r i p h e r a l  a u d i t o r y  

nervous  sys t em,  one does  n o t  s e e  any d i r e c t  ana logue  of t h a t  



function. Rather, each fibre conducts a train of electrical 

impulses, each of which is of very brief duration (a few 

microseconds) and is of approximately the same voltage. At 

first sight, these pulse trains are highly irregular: some- 

times they are obviously affected by changes in the signal, 

at other times apparently not. 

For a while it was felt that the impulse rate was important 

primarily in determining which fibres are active, and tho 

information is encoded in the pattern of active fibres. These 

"place theories" of audition, while plausible in neurophysio- 

logical terms, had difficulty in accounting well for the psy- 

chophysical data. In particular it has been difficult to re- 

late sensibly the results on frequency and intensity discrimina- 

tion. During the 1940 to 19601s, first Galambos and Davis 

(1943)" then Kiang (1965, 1968) and Rose and his associates 

(1967) were able to implant microelectrodes into single nerve 

fibres and measure the temporal pattern of impulses with an 

"Galambos, R. and Davis, H. (1943) I1The Response of 
single auditory nerve fibres to acoustic stimulation" Journal 
of Neurophysiology 6:39-57. 

kiane. N .  Y-S. (1968) "A Survev of recent develo~ments 
in the stEiy of audiiory physiology.;' Annals of 0toloHy, 
Rhinoloev and Larvnoloev 77:656-676. 

Rose, J. E., Brugge, J. F., Anderson, D. J., and J. E. 
Hind (1967) "Phase-locked response to low frequency tones in 
single auditory nerve fibres of the squirrel monkey. Journal 
of Neurophysiology 30:769-793. 

Kiang, N. Y-S (1965) Discharge Patterns of Single Fibres 
in the Cat's Auditory Nerve. Cambridge. MIT Press. 



accuracy of 20 microseconds or better. 

One way of plotting an aspect of the data is as the 

distribution of interarrival times between successive pulses. 

These are called interval histograms. One is reproduced in 

Figure 5. The distribution can be described as multimodal 

with the modes at integral multiples of the period of the sine 

wave presented to the ear, and with the proportion of observa- 

tions in each mode decaying as a geometric distribution. Thus 

each active fibre has encoded the frequency of the sine wave 

that is presented. Moreover, as the intensity of the sine 

wave is altered, the geometric parameter changes so that the 

rate increases with signal intensity. So, intensity as well 

as frequency information is encoded on each fibre. Therefore, 

in addition to the possibility of a place encoding of the 

input we also have the possibility of a temporal encoding on 

individual fibres. In the most extreme version of the tem- 

poral hypothesis, one supposes that the only role of the 

multiplicity of fibres - -  some 30,000 of them - -  is merely to 

provide adequate sample sizes of interarrival times within a 

relatively brief time. If, for example, we are dealing with 

a 500 Hz signal, then pulses come at multiples of 2 micro- 

seconds, and so on any one fibre we can expect it to take 

anywhere from two to 20 microseconds to get one interval. If 

the nervous system is to estimate a distribution, then 

hundreds of intervals will be needed. Either this would re- 

quire minutes of observation time, which is clearly not the 

case, or hundreds of parallel channels which are available. 
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A s  y e t  we have s a i d  n o t h i n g  about  t h e  r ange  o f  f r e -  

q u e n c i e s  and i n t e n s i t i e s  t o  which any one f i b r e  is  respons ive .  

Green and Luce (1973)* have d e s c r i b e d  it t h i s  way: 

" I f  we r e s t r i c t  o u r  a t t e n t i o n  t o  p u r e  t o n e  s i g n a l s ,  t h e  

f o l l o w i n g  seems t o  summarize t h e  s i t u a t i o n .  Each f i b r e  has 

a  c h a r a c t e r i s t i c  s i g n a l  f r equency  t o  which it i s  most ,  bu t  

n o t  e x c l u s i v e l y  r e s p o n s i v e .  A t  t h i s  f r e q u e n c y ,  t h e r e  is  a  

lower  and upper  t h r e s h o l d .  Below t h e  lower  t h r e s h o l d  it 

f i r e s  a t  i t s  spon taneous  r a t e ;  between t h e  two,  t h e  r a t e  i n -  

c r e a s e s  by a  f a c t o r  o f  2 t o  1 0 ,  r e a c h i n g  a  maximum r a t e  a t  

t h e  uppe r  t h r e s h o l d ; f o r  more i n t e n s e  s i g n a l s  t h e  r a t e  i s  

e i t h e r  m a i n t a i n e d  o r  d r o p s  somewhat. A s  t h e  f r e q u e n c y  d e v i a t e s  

from t h e  c h a r a c t e r i s t i c  one ,  b o t h  t h r e s h o l d s  r i s e  and t h e  

maximum f i r i n g  r a t e  remains  abou t  t h e  same. Looked a t  ano the r  

way, a  p u r e  t o n e  o f  s u f f i c i e n t  i n t e n s i t y  a c t i v a t e s  a  p a r t i c u l a r  

s e t  of  f i b r e s  i n  t h e  s e n s e  t h a t  i t  d r i v e s  t h e i r  f i r i n g  r a t e s  

above t h e i r  spon t aneous  r a t e s .  Changing t h e  f r e q u e n c y  c a u s e s  

some f i b r e s  t o  d r o p  from t h e  a c t i v e  c a t e g o r y  and o t h e r s  t o  

e n t e r  i t ;  i n c r e a s i n g  t h e  i n t e n s i t y  adds  f i b r e s  t o  t h e  a c t i v e  

c a t e g o r y . "  

One o f  t h e  more p e r p l e x i n g  q u e s t i o n s  i s  how t h e  ne rvous  

sys tem encodes  t h e  f u l l  dynamic r ange  o f  sounds - -  abou t  1 2  

*Green ,  D .  M .  and R .  D .  Luce (1973) "Counting and Timing 
Mechanisms i n  Aud i to ry  D i s c r i m i n a t i o n  and R e a c t i o n  Time," i n  
D .  H .  K r a n t z ,  R .  C .  A t k i n s o n ,  R .  D .  Luce and P. Suppes ( e d s . )  
Contemporary Developments i n  Mathemat ica l  Psychology ,  11. 
San F r a n c i s c o .  Freedman. I n  P r e s s .  



orders of magnitude in intensity - -  since the characteristic 

frequencies of the fibres that have been studied seem to 

cluster in the middle of the range. In the theory to be 

described, we make a wild jump from physiological data and 

hypothesize that further in from the periphery there exist 

fibres where the full dynamic range is dealt with. Although 

there are not yet any physiological data to support it, the 

postulate is that the full dynamic range is shared by a numbe~ 

of fibres, which, as a bundle, constitute a single channel 

encoding the whole range. We shall assume that such a 

channel exists functionally and that it, in effect, has a 

dynamic range of rates between two and three orders of magni- 

tude. And ignoring frequency for present purposes, we assume 

that the distribution of interarrival times is a skewed geo- 

metric, i.e., an exponential density with a parameter that is 

an increasing function of signal intensity. Further, if we 

assume that the intervals are independent, then the stochastic 

process is known as s Poisson one. This is the simplest, 

continuous stochastic process which corresponds to pure 

temporal randomness. One way to see this is to look at the 

conditional density function or hazard function: the density 

of firing at time t given that no firing has occurred between 

0 and t. If f is the density of interarrival times, i.e., 

f(t) = ~ e - ' ~  then the hazard function h(t) is given by, 

h(t) = 
f [t) 

m 
= he-" " 

f(x)dx 



and we see that it is uniform in time. 

If this view of the encoding is approximately correct, 

then whenever the central nervous system (CNS) is asked to 

make a judgment abol~t signal intensity it must estimate 

these rates in parallel channels. Two extreme ways can be 

suggested for doing this which are called counting and tim- 

ing procedures. In the first, one fixes a time interval and 

counts the number of pulses that occur on each channel during 

that time; whereas, in the second one fixes the number of 

counts on each channel and times how long it takes to achieve 

each count. Note that in each case the CNS must measure a 

time, count a number of pulses, and form a ratio to get an 

estimate of a rate. This suggests, then, that if it can do 

one it should be able to do the other. So a question we can 

ask is whether we can demonstrate experimentally that both 

procedures are available. There does not seem to be any way 

to approach the question physiologically, so we turn to the 

question of demonstrating it psychologically. 

Mathematical Reasoning 

The problem is whether we have any chance of observing a 

behavioral difference. Consider the following experimental 

design." There are two tones, 0 and 1, which differ only in 

*From this point on, the notes are taken almost verbatim 
from Luce, R. D. (1973) "Renewal Process Models for Psycho- 
physics" Social Science Working Papers, 27. School of Social 
Sciences, University of California, Irvine, California, 92664. 
It will appear as one chapter in a volume on a conference held 
at the Georgia Institute of Technology, June 1973, and sponsored 
by the Mathematical Association of Ameri'ca. 



intensity; 1 being more intense than 0. On each trial exactly 

one is presented, the schedule being random, but equally 

probable. A signal is continued until the subject responds 

by identifying which he thinks it is, after which there is 

feedback as to the accuracy of his response and the payoff 

he is to receive. The accuracy payoff oij is a sum of money 

for response j to presentation i; it is positive when i = j 

and negative when i # j; varying the values oij is one way 

to generate an empirical ROC curve. The deadline payoff is 

simply a fine (with no payment for accuracy) whenever a 

response is slower than the deadline. 

At a theoretical level, let us suppose that when a signal 

is presented, there are identical renewal processes on each 

of the J channels. By a renewal process is meant a point 

process in time such that the time between successive points 

- -  interarrival times (IAT) - -  are independently and identically 

distributed. The best known example is the Poisson process in 

which the distribution of IATs is exponential; it is the model 

of pure temporal uncertainty, somewhat analogous to a uniform 

distribution in the finite case. Obviously, the model is 

already high idealized since all of the channels are assumed 

to be statistically identical, which is not true of the fibers. 

Denote by Mi and Vi the mean and variance of the distribution 

characterizing the renewal process for signal i, and suppose 

that Mo > M1 (the more intense signal has the higher rate) and 

3 that Vi and Mi/Vi are both strictly increasing functions of Mi. 

2 (This is obviously true in the Poisson case since Vi = Mi.) 



If a counting rule is used, we assume a fixed time 6 (which, 

however, is some function of the deadline imposed and so can 

be manipulated experimentally) during which a count is ob- 

served. If a timing rule is used, we assume a fixed count 

K + 1 per channel during which the time for K IATs is ob- 

served. The decision must rest either on the random variable 

N, which is the total count over the J channels observed in 

time 6, or the random variable T, which is the total time for 

K IATs summed over the J channels. Since the mean time be- 

tween pulses is smaller for the more intense signal, it cor- 

responds to a larger count and a smaller overall time. So 

plausible decision rules (which have been shown to fulfill 

various conditions of optimality in the theory of signal 

detectability) are to establish criteria, dependent upon the 

payoff structure, and to respond that the more intense signal 

was presented whenever either the count exceeds its criterion 

or the total time is less than its criterion, depending on 

which rule is in use. 

Assuming that is so, let us derive the form of the ROC 

curve in each case. First, the counting rule. We invoke 

the following well known central limit theorem (Feller, 1966, 

p. 359)": in a renewal process with E(1AT) = M and V(1AT) = V, 

the number of counts N(T) observed in time T is asymptotically 

3 normally distributed with mean T/M and variance TV/M , i.e., 

*Feller, W. (1966) An Introduction to Probability Theory 
and its Application. New York. Wiley. Vol. 11. 



where 

Assuming that J 6  = T is sufficiently large for this approxima- 

tion to be good, we see that with a criterion z, we may write 

where 

is the normal deviate corresponding to the probability pil. 

Frequently it is convenient to represent a probability in 

terms of its normal deviate, especially when, as in this case, 

two deviates are linear functions of one another since, by 

eliminating c, we obtain 

3 as our expression for the ROC curve. By assuming Vi and Mi/Vi 

are both strictly increasing functions of M. it can be shown 
1' 

that the slope of this curve is < 1; in the Poisson case it 

is similar, but is based on the central limit theorem (Feller, - 



1966, p. 253) which for a renewal process with E(1AT) = M 

and V(1AT) = V asserts that the total time T required to 

accumulate E IATs is asymptotically normally distributed 

with mean EM and variance EV, i.e., 

lim P T(E) - EM 

R - . -  < ;] = IZ N(0,l). 
(EV)~/~ - - w 

Taking E = JK, we find immediately that the ROC curve is given 

by 

z = ) 'I2 zo + (JK) 1/2 ("~ - M1) 
vl1I2 

9 

which again is a straight line. By assumption 1, it has a 

slope > 1, equal to MO/M1 in the Poisson case. Thus, the 

slope of the ROC curve is a clear criterion as to which pro- 

cedure is in use. 

A second criterion can be found by looking at the response 

times. These times are the sum of two parts, that taken up 

accumulating information about the signal, which we call the 

decision time, and all other times, including those for compu- 

tations, transmissions, muscle movements, etc., which we call 

the residual time. Let the mean of the residual time be 

denoted by F- , then for the counting model the mean response 

time for signal i and response j is 



The prediction is that it is independent of i and j; indeed, 

if the decision and residual times are independent, it is not 

just the mean, but the whole distribution that is predicted 

to be independent of i and j. In the timing model, the de- 

cision time is more complicated because it is determined by 

the slowest of the J channels to observe K IATs. Denote 

by h(J,~,a) the mean of this time when the renewal process 

L has mean 1 and variance a . Then, for a process with mean 

Mi and variance Vi, 

In the Poisson case, V;/'/M~ = 1, and so for it and any other 

case in which this ratio is nearly constant we may eliminate 

h and write 

where we have dropped the response subscript j since, by the 

next to last equation, it does not matter. So, as we vary 

the deadline, we should find a linear relation between the 

mean response times; moreover, the slope should be identical 

to that of the corresponding ROC curve. 

Green and Luce (1973a) ran three observers in such an 

experiment using a faint 1000 Hz tone in noise for 1 and noise 

alone (0 intensity signal) for 0. The design was as described, 

with deadlines varying from 250 msec to 2000 msec. When the 

deadline applied to all trials, the mean response time was the 



same in all four cells except for the two longest deadlines, 

where there was some tendency for the signal trials to be 

slower than the noise ones; we return to this discrepancy 

below. The ROC data (Fig. 6) were well fit by straight lines 

with estimated slopes of 0.92, 0.69 and 0.90, all supporting 

Figure 6 

ROC Curves for three observers from a Yes-No experiment 
involving a signal in noise (s) versus alone (n) , i.e., 
Y = s = l , N o = n = O .  

The coordinates are normal deviates. (This is Fig 4 of 
Green and Luce 1973a).* 

Slope 

P' 
Obs 2 

;J IV LV JV VV 

I 1 1 I l l  

*Green, D. M. and Luce, R. E. (1973a)"Speed-accuracy 
trade-off in auditory detection" in S. Kornblum (ed.) 
Attention and Performance IV. New York. Academic Press. 



the counting model. When three other observers were run in 

exactly the same experiment except that the deadline applied 

only to signal trials, both the MRT and ROC data were well 

approximated by straight lines and the pairs of estimated 

slopes were : 

1.34, 1.30; 1.48, 1.47; and 1.38, 1.37. 

The timing model was clearly supported. 

A striking way to show up the differences between the 

models and between these two sets of data is as a trading 

relation between speed and accuracy. A very common measure 

of accuracy, suggested by the theory of signal detectability, 

is to compute the value of zl, called d', corresponding to 

zO = 0. For the counting model, 

1/2 d ' = A d  , 
and for the timing model 

where 

Eliminating d yields 

' i o  MRT < r 

for the speed-accuracy trade in the counting model. 



For the timing model, the equation for mean reaction 

time must be developed more fully before we can eliminate K. 

If we let $ K  denote the distribution of the K IATs, then by 

definition 

Assuming that $K is approximately normal, which for K > 5 is - 
not a bad approximation in the Poisson case, then it follows 

readily that 

where H(J) is the mean of the largest of J random variables 

distributed N(0,l). If we substitute this into the equation 

for mean reaction time and introduce the variable 

and the constant 

then eliminating K yields the speed-accuracy trade 

Three qualitative differences can be seen by comparing 

the two equations that give d'. First, the last point for 

which d' = 0 is larger in the timing model than in the counting 



one by the amount Mi + v:/'H(J). Second, because the times 

MRTl and MRT2 are different in the timing model, there are 

two trading relations. Third, the initial slopes of the 

speed-accuracy trade equation for the timing model are greater 

than that of coefficients for d '  in the counting case by 

factors ( M ~ / M ~ ) ~ / ~  and MO/M1. Figure 7 shows the data plotted 

in this way, with the data for the observers combined in the 

Figure 7. 
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f i r s t  exper iment  and s e p a r a t e d  f o r  c l a r i t y  i n  t h e  second 

one .  We s e e  t h a t  t h e  q u a l i t a t i v e  p r e d i c t i o n s  a r e  s u s t a i n e d .  

I n  f a c t ,  t h e  growth o f  t h e  f u n c t i o n  i n  t h e  second  exper iment  

i s  s o  much more r a p i d  t h a n  i n  t h e  f i r s t  t h a t  t h e  accu racy  a t  

l o n g  d e a d l i n e s  i s  c o n s i d e r a b l y  g r e a t e r  u s i n g  t h e  t i m i n g  r u l e  

t h a n  t h e  c o u n t i n g  one .  The e v i d e n c e  s u g g e s t s  t h a t  two of  

t h e  t h r e e  o b s e r v e r s  r e a l i z e d  t h i s  and swi t ched  t o  t i m i n g  be -  

h a v i o r  f o r  t h e  l o n g  d e a d l i n e s ,  t h u s  p roduc ing  t h e  d i s c r e p a n c y  

i n  t i m e s  mefitioned e a r l i e r .  

Magnitude E s t i m a t i o n  

Another  s e t  o f  r e l a t e d  r e s u l t s  h a s  been s u g g e s t e d  by 

some d a t a  c o l l e c t e d  by t h e  l e c t u r e r  and D .  M .  Green u s i n g  

t h e  method o f  magni tude  e s t i m a t i o n .  I n  t h i s  method,  due t o  

S .  S .  S t e v e n s ,  s u b j e c t s  a r e  a sked  t o  a s s o c i a t e  p o s i t i v e  

numbers t o  ( a c o u s t i c )  s t i m u l i  i n  such  a  way t h a t  t h e  r a t i o s  

o f  t h e  numbers r e p r e s e n t  t h e  s u b j e c t i v e  r a t i o s  o f  t h e  sounds 

p r e s e n t e d .  Although t h e  t e c h n i q u e  might  sound i m p l a u s i b l e ,  

i n  f a c t ,  h i g h l y  r e g u l a r  and r e p e a t a b l e  r e s u l t s  a r e  o b t a i n e d .  

I f  we assume t h a t  s u b j e c t s  have an i n t e r n a l  r e p r e s e n t a -  

t i o n  o f  s i g n a l  i n t e n s i t y ,  such  a s  proposed  by e i t h e r  t h e  

t i m i n g  o r  c o u n t i n g  models ,  t h e n  a  p o s s i b l e  i n t e r p r e t a t i o n  

of  ou r  i n s t r u c t i o n s  i s  f o r  t h e  s u b j e c t s  t o  make t h e  r a t i o  

of  t h e  p r e s e n t  r e s p o n s e  t o  t h e  p r e v i o u s  one e q u a l  t o  t h e  

r a t i o  of  t h e  r e p r e s e n t a t i o n s .  T h i s  i s  t h e  most obv ious  i n -  

t e r p r e t a t i o n  t h e  s u b j e c t s  c o u l d  p l a c e  on t h e  i n s t r u c t i o n s  

and i t  s u g g e s t s  t h a t  t h e r e  s h o u l d  be s t r o n g  s e q u e n t i a l  



dependencies upon the preceeding signal response, as there 

are (Ward, 1973).* 

In our theoretical calculation, let us suppose that the 

rate estimated according to the timing decision rules applied 

to a Poisson process is the subject sense of the signal. Let 

IJ be the intensity parameter of the Poisson process, k (=JK) 

be the IAT sample size, T the random variable consisting of 

the sum of all IATs observed, and R the random variable equal 

to the subject's numerical response. A prime added to any 

symbol simply refers to the trial preceeding the one for which 

an unprimed symbol is used. Our response hypothesis, then;is 

simply 

By elementary distribution arguments, we see that 

R T'k 
where P(R = x) = P(=' = X) 

and 

Equation (1) is the beta distribution of the second kind. Its 

L mean m and variance a are readily calculated, from which 

"Ward, L. M. (1973) "Repeated Magnitude Estimates with 
a Variable Standard: Sequential Effects and Other Properties." 
Perception and Psychophysics 13:193-200. 



Observe t h a t  t h e  r i g h t  s i d e  i s  independent  of  t h e  r a t e  

p a r a m e t e r s  p  and p ' ,  bu t  s i n c e  k  = JK may depend on i n t e n s i t y  

( t h r o u g h  J )  t h e  r a t i o  can  s t i l l  be a  f u n c t i o n  o f  i n t e n s i t y .  

I n  d a t a  from s e v e r a l  o b s e r v e r s  who responded  approxi -  

m a t e l y  500 t i m e s  t o  each  of  20 s i g n a l s  spaced  e q u a l l y  i n  dB 

o v e r  a  50 dB r a n g e ,  f o r  any g i v e n  i n t e n s i t y  r a t i o  (equal  dB 

d i f f e r e n c e )  t h e r e  i s  no ev idence  t h a t  o/m changes  g r e a t l y  

a s  t h e  a b s o l u t e  l e v e l  o f  i n t e n s i t y  changes .  T h i s  sugges t s  

t h a t  J i s  n e a r l y  independent  of  i n t e n s i t y  and s o  k  2 k ' .  

For each  i n t e n s i t y  r a t i o  we, t h e r e f o r e ,  a v e r a g e  a l l  o f  t h e  

d a t a  o v e r  t h e  d i f f e r e n t  l e v e l s  o f  i n t e n s i t y ,  o b t a i n i n g  f o r  

one o b s e r v e r  t h e  p l o t s  o f  m and o/m v e r s u s  i n t e n s i t y  shown i n  

F i g u r e  8 .  The f i r s t  t h i n g  t o  n o t e  i s  t h a t  m grows approxi -  

ma te ly  a s  a  power f u n c t i o n  of  i n t e n s i t y  ( s e e  n e x t  s e c t i o n  f o r  

f u r t h e r  ev idence  on t h i s  p o i n t ) .  Second,  a l t h o u g h  o/m i s  

p r o b a b l y  a  c o n s t a n t  f o r  s i g n a l  r a t i o s  i n  e x c e s s  o f  20 dB, 

i t  d e c r e a s e s  by a  f a c t o r  o f  a s  much a s  3 f o r  s m a l l e r  r a t i o s .  

Assuming k  = k '  i n  each  c a s e ,  we g e t  e s t i m a t e s  o f  sample 

s i z e s  o f  r ough ly  19  and 167 r e s p e c t i v e l y .  The former seems 

v e r y  s m a l l .  

The q u e s t i o n  i s  whe the r  we can  make t h e o r e t i c a l  s ense  of 

t h e s e  d a t a .  One i d e a ,  which a l t h o u g h  i t  has  n o t  y e t  been 

worked o u t  i n  d e t a i l  seems t o  have t h e  c o r r e c t  q u a l i t a t i v e  

f e a t u r e s ,  i s  t h a t  t h e  CNS i s  a b l e  t o  f o c u s  o n l y  on a  l i m i t e d  



Fi ure 8. Mean and Coefficient of Variation (a/m) of the h successive magnitude estimates as a function of 
the ratio of the stimulus intensities for one observer. 
(Unpublished data of D. M. Green and R. D. Luce.) 

SIGNAL RATIO IN dB 



range of intensities at any one time. An extreme version of 

this model supposes that it can collect a large sample, say 

167, only for rates falling in a range corresponding to about 

20 dB, and for rates outside that range, only a much smaller 

sample, say 19, is possible. This makes sense if we postulate 

that each nerve fiber has only dynamic range of about 20 dB, 

as seems to be the case, and that as intensity is changed 

some fibers are saturated while others are brought into play. 

The assumption would then be that the C N S  can monitor fully, 

with its largest sample size, only these fibers corresponding 

to one 20 dB range, and that activity outside that range is 

monitored only with much smaller samples. This assumption 

makes the 20dB limit in the physiological data account for 

the 20 dB edges in this magnitude estimation experiment and 

in certain absolute identification ones. Furthermore, it 

suggests experiments to test itself. If we can manipulate 

the range that the C N S  is monitoring, then we should get 

predictable phenomena. For example, by introducing sequential 

dependencies in the signal presentation schedule, we can make 

the probability that two successive signals are within 20 dB 

of each other as low or high as we choose, which should affect 

the tendency of the subject to monitor near or far from the 

value of the previous signal. If we then compare the behavior 

to the exceptional signals - -  the near ones when near ones 

are improbable and the far ones when far ones are improbable 

- -  with the behavior to the common ones, we should find the 

former much more variable than the latter. 



Response Time t o  t h e  Onset of a  S igna l  

Our l a s t  a p p l i c a t i o n  i l l u s t r a t e s  t h e  f a c t  t h a t  problems 

t h a t  a r e  simple t o  formulate  i n  t h i s  Poisson theory  do no t  

n e c e s s a r i l y  l e a d  t o  so lved  mathematical  q u e s t i o n s .  

Consider an experiment i n  which a  s i g n a l  comes on a t  a  

random time a f t e r  a  warning s i g n a l ,  and t h e  obse rver  i s  t o  

respond t o  i t  a s  r a p i d l y  a s  p o s s i b l e  wi thou t ,  however, making 

too many a n t i c i p a t o r y  responses .  Formally,  t h e  d a t a  from each 

t r i a l  c o n s i s t  of a  p a i r  of random v a r i a b l e s  S  and R ,  where S  

i s  t h e  time a t  which t h e  s i g n a l  (say,  a  change i n  i n t e n s i t y )  

comes on and R i s  t h e  time a t  which t h e  s u g j e c t  responds.  

Denote by 

f ( x , t )  = P(R = t l ~  = x) 

t h e  c o n d i t i o n a l  p r o b a b i l i t y  d e n s i t y  t h a t  t h e  response  t ime 

is t when t h e  s i g n a l  onse t  t ime i s  x ,  and by 

gCx> = P(S = XI 

t h e  d e n s i t y  of t h e  s i g n a l  o n s e t  t imes ,  which i s  under e x p e r i -  

mental c o n t r o l .  

I n  terms of t h e  model, we suppose a Poisson p rocess  wi th  

parameter v u n t i l  S and one wi th  parameter u ( >  v) a f t e r  S. 

Some s o r t  of  d e c i s i o n  r u l e  w i l l  be a p p l i e d  t o  t h i s  s t o c h a s t i c  

p r o c e s s ,  l ead ing  t o  a  d e c i s i o n  a t  t ime D (<  R) t o  i n i t i a t e  

t h e  response .  Whatever t h a t  r u l e  may be ,  l e t  

k(x ,y)  = P(D YIS  = x) 

denote t h e  c o n d i t i o n a l  p r o b a b i l i t y  d e n s i t y  t h a t  t h e  d e c i s i o n  

t ime i s  y  when t h e  s i g n a l  onse t  t ime i s  x .  We r e f e r  t o  t h e  



time R-D as the residual time - -  it consists of all the times 

consumed by the nervous system aside from those taken up in 

arriving at a decision. We make the following assumptions 

about this random variable: 

(i) R-D and D are independent random variables. 

(ii) R-D and S are independent random variables. 

(iii) R-D is a bounded random variable. 

Empirically, there is some doubt whether (i) and (ii) are 

strictly correct. For example, the readiness to respond may 

be affected by the overall delay, and so by the value of S. 

The evidence in favor of (iii) is the boundedness of response 

times to intense signals. The bound appears to be the order 

of 300 msec. By (ii) one can reasonably postulate a density 

for R-D, call it r, and by (i) we see that 

f(x,t) = A(x,y)r(t-y)dy. 1: 
It is convenient to divide the observable response time into 

two parts corresponding to anticipatory responses and those 

that appear to be in response to the signal, specifically 



I n  t h e  expe r imen ta l  a n a l y s i s  and d a t a  g i v e n  below, t h e  

o n s e t  d e n s i t y  was e x p o n e n t i a l ,  

The r e a s o n  f o r  t h i s  c h o i c e  i s  t h a t  i t  makes i n e f f e c t i v e  any 

p o s s i b l e  s t r a t e g i c  c o n s i d e r a t i o n s  i n  r e spond ing  based  on how 

long  t h e  s u b j e c t  ha s  w a i t e d .  

To t h e  b e s t  o f  my knowledge, t h e  f o l l o w i n g  b a s i c  q u e s t i o n  

has  n o t  been answered:  g i v e n  a  payof f  f u n c t i o n  P(S,R) (where,  

p resumable ,  P(S,R) < 0 f o r  R < S) , what i s  a n  o p t i m a l  d e c i s i o n  

r u l e  t o  d e t e c t  a  s imp le  i n c r e a s e  ( o r  d e c r e a s e )  i n  t h e  pa rame te r  

o f  a  Po i s son  p r o c e s s ?  The answer t o  t h i s  might  p r o v i d e  some 

s u g g e s t i o n s  about  t h e  s o r t  o f  r u l e s  employed i n  t h e  CNS. 

A f a r  s i m p l e r  q u e s t i o n ,  a l t h o u g h  n o t  w i t h o u t  d i f f i c u l t i e s ,  

i s  t o  p o s t u l a t e  t h e  s i m p l e s t  r u l e  one can t h i n k  o f ,  d e r i v e  

p r o p e r t i e s  of  a ,  f R  and f R - S ,  and compare t h e  l a t t e r  two w i t h  

d a t a .  The s i m p l e s t  r u l e  we have though t  of  ( s e e  Luce 4 Green,  

1972)" ,  which i s  b o t h  t h e  most r e s p o n s i v e  and most v a r i a b l e  

"Luce, R.  D.  and D .  M .  Green (1972) "A Neura l  Timing 
Theory f o r  Response Times and t h e  Psychophys ics  o f  I n t e n s i t y . "  
P s y c h o l o g i c a l  Review 79:14-57.  



way to detect a change, is to select a criterion 6 and com- 

pare each IAT with it, initiating a response the first time 

after the warning signal that IAT < 6 .  The value selected 

for 0 will depend, of course, on the magnitude of the change 

to be detected and the payoffs. Assuming this rule and 

denoting by Ro the density R conditional on a pulse at time 

0, elementary probability considerations lead to the follow- 

ing pair of integral-difference equations for R and R 
0 

The technical problem is to solve these equations. Al- 

though this has not be done fully, enough is known to suggest 

that the model is not wholly absurd. In particular, for 

sufficiently large t, the boundedness of the residual times 

plus the fact that a slow exponential decay dominates the 

solution permits one to show that 



where 

and 

where 

and A and B are some functions of the parameters. Of course, 

the tails of the distributions constitute only a fraction of 

the data and we would really like to know the form of the 

entire solution, but at present we have no option but to waste 

much of the data. 

A first test of the model is to see if the tails of the 

distributions are approximately exponential. A sample of 

data is shown in Figure 9, for times greater than 1/2 sec, 

and the approximation is not bad. Using the previous four 

equations to estimate v' and p' for different intensities 

yields Figure 10. Observe that the growth of pl/v' is ap- 

proximately a power function of intensity, which agrees with 

the conclusion from ME data. However, there is a considerable 

discrepancy in the estimates of the exponents: something of 

the order of 0.30 - + 0.15 from the ME data for a variety of 

subjects and about 1.5 from these reaction time data. 

As Luce and Green (1972) pointed out, one source for 



F i g u r e  9 

T a i l s  ( t  < 0 . 5 0  s e c . )  o f  t h e  f a l s e  a l a rm  and r e a c t i o n  
t ime  d i s t i ' = i b u t i o n s  f o r  one o b s e r v e r  a t  one i n t e n s i t y  
l e v e l .  The smooth c u r v e s  a r e  t h e  b e s t  f i t t i n g  exponen- 
t i a l ~ ,  and t h e  i n s e r t s  p r e s e n t  t h e  d a t a  when grouped i n -  
t o  2 0  e q u i p r o b a b l e  i n t e r v a l s  a c c o r d i n g  t o  t h o s e  d i s t r i -  
b u t i o n s .  



Figure 10 

Ratio of Poisson parameters estimated from the tails of 
the reaction time distributions from two observers as 
a function of signal-to-noise ratio in dB (This is Fig. 
9 of Luce and Green, 1970). 



the discrepancy is that the reaction time analysis is for 

only a single channel, and the following model suggests that 

this may be the only source. Suppose that the single channel 

analysis applies independently to each of J parallel channels, 

each with a criterion 6, and that a decision does not initiate 

a response, but rather causes another channel to fire. This 

common channel, which receives inputs from each of the J 

channels, applies the same decision rule, but with criterion 

0, and it initiates a response whenever two of the J channels 

fire sufficiently closely. 

If the rate of the underlying process is p, then the 

mean IAT of the decision process is 

as can be shown by deducing the Laplace transform of to(O,t) 

from Equation (3) and then calculating the mean in the usual 

way. By a well known theorem (Cox, 1962, p. 77-79)" the 

superposition of J independent, identical renewal process 

approaches a Poisson process as J + -; moreover, its rate 

is given by 

p* 2 ~p(1-e-"'). 

If we assume that both 6 and 0 are sufficiently small so 

that we may use linear approximations to the exponentials in 

the preceding equations and drop the term ''0 in Equation ( 4 ) ,  

*Cox, D. R. (1962) Renewal Theory. London, Methuen. 



which neatly accounts for the factor of 4 discrepancy between 

the ME and reaction time estimates. 

Concluding Remarks 

I hope that the following points have become clear as a 

result of my illustrative psychophysical models. 

1. Psychology has empirical problems of some complexity 

which can be significantly illuminated by using probability 

models accessible to undergraduate students. 

2. As in physics, radical oversimplifications (identical 

channels, the simplest of decision rules, Poisson processes) 

of the micro-structure (neural pulse trains) can, if handled 

with care, provide adequate qualitative and even quantitative 

models of the macro-structure (psychophysics). 

3. Courses on stochastic processes for social science 

majors probably should include some material on continuous- 

time stochastic processes, especially Poisson processes and 

perhaps more general renewal ones. Psychologists are 

generally less familiar with such processes than with dis- 

crete time ones (especially Markov chains), and as a result 

they have developed little theory for situations in which 

responses can occur at any time (e.g., Skinnerian operant 

conditioning experiments) and they tend to employ experimental 

designs with a trial structure, which may very well seriously 



distort an organism's performance from what it would be 

under more natural conditions. bloreover, as I have tried 

to demonstrate, continuous time processes are probably satis- 

factory models for some neural activity and certainly can 

serve as idealized underpinnings for psychological theories. 


